Dual-component synaptic potentials in the lamprey mediated by excitatory amino acid receptors.

نویسندگان

  • N Dale
  • S Grillner
چکیده

The synaptic mechanisms underlying amino acid-mediated excitation in the lamprey spinal cord have been investigated. Fine stimulating electrodes were used to stimulate single axons in the spinal cord and evoke unitary EPSPs in lamprey motoneurons and one type of premotor interneuron, the CC interneuron. Three types of EPSP, distinguished by their time course and sensitivity to amino acid antagonists, were seen. Fast EPSPs had a fast rise time (mean, 6.5 msec) and a short half-decay time (mean, 22.5 msec). Slow EPSPs lasted at least 200 msec, had a slow rise time (mean, 28 msec), and a long half-decay time (mean, 109 msec). The third type of unitary potential, called "mixed" EPSP, also lasted at least 200 msec, had a fast rise time (mean, 12 msec), and a long half-decay time (mean, 105 msec). Lamprey neurons were found to possess 3 types of excitatory amino acid receptor: N-methyl-D-aspartate (NMDA), kainate, and quisqualate receptors. 2-Amino-5-phosphonovaleric acid (APV) or Mg2+ blocked the depolarizations caused by N-methyl-D,L-aspartate (NMA) but not those of kainate or quisqualate. Cis-2, 3-piperidine dicarboxylic acid (PDA) blocked the depolarizations caused by NMA and kainate but not those of quisqualate. Fast EPSPs were unaffected by the bath application of APV or Mg2+ but were greatly reduced by PDA, suggesting that these EPSPs were mediated by non-NMDA, possibly kainate receptors. Both APV and Mg2+ blocked the slow EPSPs, suggesting that they were mediated by NMDA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excitatory synaptic drive for swimming mediated by amino acid receptors in the lamprey.

In order to investigate the properties and pharmacology of the excitatory synaptic drive received by motoneurons during swimming in the lamprey, propriospinal excitatory interneurons were activated as a population by the regional application of N-methyl-D,L-aspartate (NMA) to either the 6-8 rostral-most or the 6-8 caudal-most segments of lengths of isolated spinal cord. This caused a rhythmic m...

متن کامل

Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos.

The trunk and tail skin of Xenopus laevis embryos near the time of hatching is innervated by the mechanoreceptive free nerve endings of Rohon-Beard neurons, a homogeneous class of cutaneous primary afferent fibers. Rohon-Beard neurons have cell bodies and axons in the dorsal spinal cord, where they monosynaptically excite a population of dorsolaterally situated interneurons (Clarke and Roberts,...

متن کامل

Calcium channels involved in synaptic transmission from reticulospinal axons in lamprey.

The pharmacology of calcium channels involved in glutamatergic synaptic transmission from reticulospinal axons in the lamprey spinal cord was analyzed with specific agonists and antagonists of different high-voltage activated calcium channels. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) induced a large decrease of the amplitude of reticulospinal-evoked excitatory postsy...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice.

The effects of the N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV), and other excitatory amino acid antagonists, were studied on CA1 pyramidal neurones treated with picrotoxin or bicuculline to reduce synaptic inhibition mediated by gamma-aminobutyric acid (GABA). Under these conditions epileptiform burst firing is readily produced by orthodromic stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 1986